
SUGGESTED REFERENCES 
 
M. BORN, Mechanics of the Atom.  Perturbation theory for classical mechanics wears somewhat 
different faces, depending on whether one’s interest is in physics, celestial mechanics, the flight 
of space vehicles, or modern mathematics.  Until recently physics textbooks tended to follow 
closely Born’s treatment, itself the product of the development of the “old” quantum mechanics.  
Born’s discussion, mainly of time-independent perturbation theory, is to be found principally in 
his Chapter 4, but there are various bits and pieces scattered through the book. 
 
E. J. SALETAN AND A. H. CROMER, Theoretical Mechanics.  This reference is cited as one of the 
better treatments along the line of Born.  Only time-independent perturbation is described.  Some 
examples, mainly referring to the harmonic oscillator, are considered in detail.  There is also a 
short section on adiabatic invariants. 
 
J. M. A. DANBY, Fundamentals of Celestial Mechanics.  Once past the level of Kepler and most 
of Newton, celestial mechanics consists almost entirely of perturbation theory and the three-body 
problem.  The literature on perturbation theory in celestial mechanics is therefore practically 
coextensive with that on celestial mechanics itself, and any citations must be highly selective.  
Danby’s text is a relatively recent (1962) exposition of what might be called the classical version 
of perturbation theory, with up-to-date applications.  It is unusually lucid for a field that 
generally runs to solid pages of formulas, and it has an extensive annotated bibliography.  The 
von Zeipel method is not mentioned, nor are more modern developments such as the use of Lie 
series. 
 
B. GARFINKEL, Lagrange-Hamilton-Jacobi Mechanics, in Space Mechanics, Part 1, ed. by J. B. 
Rosser.  Ten concise and densely packed pages in this article describe perturbation theory as 
viewed by an expert in celestial mechanics.  Assuming a background in canonical transformation 
theory and the Hamilton-Jacobi equation, it sweeps breathlessly from variation of constants to 
von Zeipel’s method.  It may be all you want. 
 
Y. HAGIHARA, Celestial Mechanics, Vol. 2:  Perturbation Theory (in two parts).  In contrast, this 
reference covers the applications of perturbation theory to celestial mechanics in exhaustive 
detail, requiring some 900 pages.  References to the current and historical literature appear to be 
nearly complete.  If you want to find out what has actually been done in using perturbation 
techniques to solve the problems of celestial mechanics, this seems to be the place to look, 
although the text in words (what there is of it) is occasionally hard to follow.  The Lie-series 
reformulation of the von Zeipel method is here, but the modern approach to stability theory is 
reserved for another volume. 
 
R. DEUTSCH, Orbital Dynamics of Space Vehicles.  It may be contested whether space 
technology provides an area of classical mechanics distinct from celestial mechanics.  Perhaps 
the separation lies in the observation that “space mechanics” was born with a computer in its 
mouth.  This reference for the most part reads like a textbook in celestial mechanics, and a good 
one at that.  Various methods of perturbation theory are described in detail, including the 
specialized ones such as Hansen’s method.  The applications, however, mostly arise from space 
technology, as, for example, perturbation of artificial satellite orbits. 



 
G. E. O. GIACAGLIA, Perturbation Methods in Non-Linear Systems.  This is probably the best 
reference for a survey of modern developments in perturbation theory – from Poincaré and 
Lindstedt through Arnold and Moser – in a reasonably understandable form.  The viewpoint 
appears basically to be that of an applied mathematician.  The text, a grayish reproduction of 
typescript, is physically hard to read. 
 
R. ABRAHAM AND E. MARSDEN, Foundations of Mechanics.  There is a new language being used 
in the development and exposition of mechanics – that of differential topology.  The physicist 
newcomer needs to take an intensive course in the language before its pronouncements become 
intelligible.  It seems likely that in the area of global stability of perturbed motion the new 
language has scored notable successes not accessible by other means.  However the expository 
advantages for the more conventional areas of mechanics appear highly doubtful.  For those who 
wish to swim in these new waters, this newly revised text provides nearly encyclopedic 
coverage.  Some 156 pages offer preliminaries on differential topology and the calculus on 
manifolds, but they require an orientation towards the methods of abstract mathematics.  The 
applications in celestial mechanics form Part IV (pp. 619-740). 
 
J. MOSER, Stable and Random Motions in Dynamical Systems.  This short book reproduces the 
text of five lectures given in 1972.  Moser has himself been responsible for many of the advances 
in the modern treatment of stability problems.  He gives here a survey of the developments in 
this century with emphasis on celestial mechanics.  Theorems are often stated without proof, and 
considerable mathematical sophistication is expected on the part of the reader.  Nevertheless it 
succeeds better than Abraham and Marsden in conveying both the flavor and the successes of the 
newer techniques. 
 
T. G. NORTHROP, The Adiabatic Motion of Charged Particles.  Although developments since the 
early 1960s are naturally not to be found here, this brief monograph provides a good introduction 
to the complexities of calculations based on adiabatic invariants.  The applications are to plasma 
“devices,” e.g., mirror machines. 
 
B. LEHNERT, Dynamics of Charged Particles.  This reference is nearly contemporaneous with 
the preceding one and provides a somewhat more voluminous discussion of the same area.  Some 
problems associated with plasma devices are discussed that do not bear on adiabatic invariants, 
e.g., radiation from the charged particles. 


