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Comparison of the heavy-fermion and Foldy-Wouthuysen formalisms at third order
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We compare two nonrelativistic (NR) reduction schemes (heavy-fermion and Foldy-Wouthuysen) that are used
to derive low-energy effective-field-theory Lagrangians. We give the explicit transformation between the two
types of fields to O(1/m?), derived from a quite general, relativistic Lagrangian. Beyond leading order the NR
reductions always involve the smaller components of the Dirac spinors that are to be integrated out to formulate
the NR theory. Even so, the transformation between the NR Lagrangians can be carried out explicitly to O(1/m?)
using a field renormalization, as long as the lower components of the Lagrangian are known. The fixed coefficient
corrections to some low-energy constants at O(1/m?) will depend on the particular scheme chosen, but will

match after the field renormalization.
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I. INTRODUCTION

When considering low-energy phenomena, it often simpli-
fies the calculations to start from a nonrelativistic Lagrangian.
Several useful and well-known examples can be found. These
include the low-energy few-body nuclear systems for which
chiral perturbation theory (x PT) has been developed, the elec-
tromagnetic properties of composite particles (moments of the
proton and neutron), atomic physics [nonrelativistic quantum
electrodynamics (NRQED)] and heavy-quark effective field
theory (HQEFT). Since the original theory, here assumed to
be an effective field theory (EFT) in the Weinberg sense [1],
is generally given by a relativistic Lagrangian, one faces the
problem of performing a nonrelativistic (NR) reduction.

Several solutions have been suggested over the years. The
simplest, which we will label the direct Pauli reduction scheme
or the 1/m expansion, expands the Dirac matrix element in
terms of the two-dimensional Pauli-spinors that appear in the
usual representation of the four-spinors.

HQEFT was originally formulated in the nonrelativistic
limit, utilizing the constraints given by the symmetries of
quantum chromodynamics (QCD) in the static limit [2].
Later HQEFT was elegantly derived from the relativistic
QCD Lagrangian using a path-integral method [3]; this we
will call the heavy-fermion (HF) approach (for a recent
review of HQEFT, see [4]). These ideas were carried over
to the descriptions of heavy baryon chiral perturbation theory
(HBxPT) [5-7].

An alternative NR reduction method would be the classic
Foldy-Wouthuysen (FW) transformation [8,9], which was
designed to provide the NR limit of quantum electrodynamics
(QED). It has also been used to derive HQEFT [10], but this
work was initially criticized by Ref. [3] for not proving HQEFT
to be an EFT (see, however, later work [11,12]). According
to Ref. [3], HF and FW give identical results for HQEFT,
although as far as we are able to ascertain, this was shown only
to O(1/m), where m is the (heavy) fermion mass. Later, these
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two methods were indeed shown to be equivalent, after a wave
function renormalization and a unitary transformation [13,14]
(see also Ref. [15,16]). However, these references considered
only renormalizable theories (QED and QCD) and [14] only
the explicit example of a constant electric field (in QED).
Neither considered the low-energy constants (LECs), which
parametrize the (usually unknown) short-distance physics in
an EFT like, e.g., xPT.

It has already been shown that, when the relativistic theory
is fully known, the direct Pauli reduction scheme (1/m expan-
sion) differs from FW and only the latter gives S-matrices that
are in agreement with the relativistic ones [17]. This provided
part of the inspiration for the present investigation. Another
motivation was the claims in the literature that FW and HF are
equivalent for HQEFT [3,10] as well as for HB y PT [18].

In both HF and FW the contributions involving the lower
Dirac spinor components are eliminated, and this can be
formalized by integrating out these “small” components from
the path integral. For momenta and field energies smaller than
m, the surviving terms can be expanded in a perturbative
series. The difference between the two methods lies in the
way the separation of lower and upper components is made,
resulting in different NR fields. Note that this ‘integrating-out’
procedure is different from what is done in, e.g., electroweak
theory, where the heavy vector bosons are integrated out
completely, at lowest order giving the Fermi weak interaction
model. Here we rather want to keep the heavy (fermion)
degrees of freedom (when they are protected by a symmetry,
like baryon number conservation), but eliminate the explicit
antifermion contributions (lower components), since they can
not be excited in the nonrelativistic limit.

In this paper we will study the HF and FW representations
in detail, starting from a quite general, relativistic, Lagrangian,
which is assumed to be known. The two methods appear
to disagree at higher orders in 1/m, i.e., the so-called
“fixed-coefficient” terms (1/m corrections) differ between
the Lagrangians. We will give explicit expressions for the
transformation necessary to get from HF to FW to O(1/m?),
showing that the corresponding fields each contain pieces of
the small/lower components of the other, already at O(1/m).
Even so, the functional form of the corresponding Lagrangians
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will differ first at O(1/m?), which explains the equivalence
found between the O(1/m) results of Refs. [3] and [10]. It is
possible to show the equivalence of the two approaches [14]
(at least for a constant electric field in NRQED), by using field
renormalization and unitary transformations. We want to treat
a more general Lagrangian than what was considered in [14]
and will show that at higher orders there are differences in
the fixed-coefficient (1/m) corrections to the LECs in, e.g.,
xPT. (In this paper we will only be concerned with LECs
introduced already in the relativistic Lagrangian, as done in,
e.g., [7,19,20].) Thus, one has to be careful to use correctly
renormalized fields when comparing LECs at this order. At
higher order also unitary transformations need to be applied.

This paper is organized as follows. In Sec. II we give
a brief review of the essential features of the HF and FW
schemes, followed by a detailed comparison and derivation of
the transformation between them. The paper is concluded by a
discussion in Sec. III. Some mathematical details are collected
in the Appendix.

II. NONRELATIVISTIC REDUCTIONS

We will assume as the starting point the relativistic
Lagrangian

L=y P —m+nG)y, ey

where the covariant derivative D* = 9* + I'* and the general
coupling matrix G (the extra factor of yy is included for future

convenience) is
A B
G= (C D) , @

where A—D are 2 x 2 matrices. The connection I''* and
the coupling matrix G contain all single-fermion couplings
(to, e.g., pions and electroweak fields) allowed by relevant
symmetries, e.g., chiral symmetry, Lorentz invariance, parity,
flavor, and color SU(3), etc. Throughout the paper we will
work in the usual Dirac representation [9] and G should be
interpreted in that representation. We further assume that G
is hermitian, i.e., that A and D are hermitian and BT = C.
No assumptions will be made regarding the commutative
properties of the elements of G and D, so the results of this
paper apply equally well to Abelian and non-Abelian field
theories. Note that A—D and D* will in general contain higher
order interactions terms which should be expanded in the
final NR formulas. This expansion is separate from the 1/m
expansion created by the NR reduction, but in some cases
the two expansions can be combined into a single counting
scheme. This happens for, e.g., HBxPT, where m ~ A, and
A, ~ 1GeV is the chiral scale. The generating functional for
the Lagrangian (1) is

Z = / [dY1[dy][dX] exp (—i / d4x£>, 3)

where X represents the fields implicit in I'* and G. These
fields will from now on be suppressed in our notation.
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A. A brief overview of the heavy-fermion method

If the fermion is heavy, we can for low four-momenta
treat it as essentially static and expand around its large mass.
Following Ref. [2], this is accomplished by writing the fermion
momentum p* in terms of the four-velocity v/ and a residual
fermion momentum /" as

pr=mot + 1", )

where 1" « m and v?> = 1. Consequently, for an on-shell
fermion, p? = m? implies that

2mv -1 41> =0. 5)

The fermion field is next split into large (H) and small (k)
components

Y =e ""VN(H + h), ©6)

where Y H = H and yh = —h, which shifts all the linear mass
dependence to the small component. Without loss of generality
we will assume for the remainder of this article that v* =
(1, 0,0, 0), and thus y = y, which simplifies the algebra and
the comparison with FW. (It is possible to keep v** general and
also do the FW transformation in terms of v* [10,13], but we
choose a simpler approach here.) The resulting Lagrangian is

. iDy + A —ic-D+B\ (H
L=H why( 202 ,
( )(—ia~D+C 2m +iDy+ D) \ h
(7)

where we have chosen to work with H' instead of H to ease
the comparison with the FW expressions further on. The cross
talk between upper and lower components can be eliminated
by defining a new small component field 4’ [3] such that

h=Hh—Q@m+iDy+ D) '(—=i5 - D+ C)H,
. (®)
' =nt — HY(—ic - D+ B)2m +iDy + D)™\

This turns the Lagrangian into a block-diagonal form:

L=H(iDy+A—(—i6 -D+B)—
(’ ot A= D+ B D

x (—i5 - D+ C)) H+h't@m+iDy+ D', (9)

and ‘completes the square’ in the path integral exponential.
Up to this point no approximations have been made, so this
equation can be regarded as a Dirac equation in two-component
form. After ‘integrating out’ the small components, which
gives a constant determinant [3] (see the Appendix), only the H
fields remain and we have obtained a rudimentary form of the
HF Lagrangian. Note that the H fields have to be renormalized
to preserve the norm [14,21]. The antifermion is implicitly
included as the ‘z-graph’-like term of Eq. (9). We next expand
this term, assuming that iD", G <« 2m. Thus, this part of
the HF Lagrangian is expanded in powers of (iDy + D)/2m,
which contains only time derivatives of the fermion field (apart
from possible derivatives in G), sandwiched between two
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space derivatives. The first few orders of the HF Lagrangian
are then

Ly = H'(iDo + A)H, (10)
1 . .
Egéz_Z_HT(—I'G-D+B)(—1'G-D+C)H, (11)
m
1 Lo~ o
£ = - HI(=i5 - D+ BYiDy + D)5 - D+ C)H,
nm
(12)

where the indices indicate inverse powers of m. The
Lagrangian in general also contains higher order interaction
terms in A—D and D". This expansion will not be shown
explicitly. For the purposes of this paper we count Dy ~ [y ~
1], although counting Dy ~ 1> /m is also possible, depending
on the process being studied. Short-range interactions are
parametrized as local counter terms, which contain LECs. The
LECs are determined either by matching conditions (when
the underlying, more complete theory is well known, e.g.,
HQEFT and non-relativistic QED (NRQED) [22]) or by fitting
EFT calculations to data (when the underlying theory is not
well known, e.g., HBxPT). In some cases, models such as
resonance saturation are used to evaluate or estimate the LECs.
The propagator for the H field is given by Eq. (9)

i i(1+52)
—— = (13)
180 +V 2m+160 180 ~ om

where [ = 83 — V2. The inverse of this propagator is nonlin-
ear in i dy beyond a certain order, and this propagator usually
appears in expanded form [7,19,20]. In order to compare
this HF propagator to the FW propagator that we will give
below, we choose a situation that appears often in our own
line of research, i.e., pion-nucleon dynamics in HByPT.
Consider an on-shell nucleon with residual four-momentum
. The HF nucleon propagator after it has emitted one pion of
four-momentum ¢ (real or virtual, but with gy, |q| < m) can
be written as

) )
2 T g g (14
lo—qo+ 51~ R

where the relativistic on-shell condition (5) has been applied.
The propagator (14) can be further expanded as needed,
whether in 1/m or in /m,/m as in pion production off two
nucleons [23]. This application of the propagator is similar
to the one advocated by Hanhart and Wirzba [24]. After
a simple re-identification of / and ¢ as the electron and
photon four-momenta, Eq. (14) can also represent the NRQED
electron propagator after emission of a soft photon.

The HF propagator [Eq. (14)] is identical to an 1/m
expansion of the relativistic propagator, projected on the upper
left 2x2 submatrix:

z(my5+l—q+m) 2m+lo—q0
(mv +1—q)* —m? —2(m +lo)qo +21- q + ¢*
14 oot
= i—. (15)
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B. Foldy-Wouthuysen transformation
in a Lagrangian formulation

In order to compare to the HF results we choose to derive
the FW transformation from the Lagrangian [10,15] instead of
the Hamiltonian as is usually done. In addition this approach
makes it possible to treat the time and space components in a
more symmetrical manner. The time derivative is implicit in all
expressions containing Dy. Our starting point is the Lagrangian
(1) rewritten as

L=v'Dy—ing-D—yom + G, (16)

where the field ¥ is chosen instead of ¥ since it makes the
algebra somewhat more transparent for the present purposes.
This expression can be further separated into odd and even
terms, i.e., terms that mix and do not mix the upper and lower
components (in the Dirac representation)

L=yl (—E -0 —ymy, (17)

where the sign convention for the even (£) and odd (O)
operators is in accordance with Bjorken-Drell [9]. The mass
term can be removed from the upper components by shifting
the zero-point of the energy, i.e., we define i = ™1, giving

L=9[-E—O—(y— mlP. (18)

The explicit expressions for the even and odd operators are

_ iDy+ A 0
52_( 0 iDo—i-D)’ (19)
—i8-13+B)

0
OE— = - 20
(—ia'D—i-C 0 20)

The FW transformation redefines the fermion field through
the consecutive application of unitary matrices:

1p_/// — l IS lSw (21)
@)
5= _lg(r)n , 22)

where S’ is related to O in the same way as S to O
[Eq. (22)] and similarly for S” and O”. These higher order odd
operators are introduced below. The transformations carried
out to O(1/m?) lead to the Lagrangian [9]

L = y"(=E = (o — Dm)y", (23)
o> o 1

"= — - - — 24
€= (2m 8m3) +& = 2510,10,€1, (24

/ Yo 03

= -— 2
O'= 710,61 = 2. (25)
0// — ﬁ[ol’ 5/]’ (26)
2m

where it is assumed that the time derivative in £, i.e., in Dy, acts
on everything to its right. All odd terms have been transformed
away to this order and only the even operators remain. The
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explicit expressions for the higher order odd operators are

1 0 B
/
O % <_C/ O) 5

1
O//:_ ( 0

4m?

where we have defined

B = (—i5 - D+ B)(iDy + D) — (iDy + A)(—i5 - D + B),
(29)

where we use the abbreviated notation

B=—iz-D+B, (32)
C=-iz-D+C, (33)
B" = B'(iDy + D) — (iDy + A)B/, (34)
C" = C'(iDy+ A) — (iDy + D)C'. 35)

The Lagrangian after the three FW transformations is

5;;}) = 2mn'n, (36)
L& = N'(Do + AN +n'(iDy + Dn, S

1 > 2 -~ A
Ly = —2—NT(—io D+ B)(—ic - D+ C)N
m
1 > 2 > A
+ 2_nT(_ig D+ C)—ic - D+ B)n, (38)
m

1 - 2 =~ B
L2 = 4_2NT(—io D+ B)(iDy + D)(—id - D+ C)N
m
1 R N R -

—~ ——N'{(~iG - D+ B)(—i5 - D+ O),

8m?

1 ., - =

(iDy + AN + Wn'(—ia D+ C)iDo + A)

L - 1 -
x (—io - D+ Byn — —n'{(—=ic - D+ C)

8m?
x (=i - D+ B), (iDy + D)}n. (39)

By construction terms mixing upper and lower components
start to appear only at the next higher order, so the square
is already ‘completed’ and one can integrate out the nfn
contributions to this order. As in the HF case, the integration
over the small components will give a constant determinant
(see the Appendix). When higher order terms, involving

C'(iDy + A) — (iDy + D)C’ 0
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27

C'=(=ic -D+C)iDy+ A) — (iDy + D)(—i5 - D+ C).
(30)

The upper (N) and lower (n) FW components of " [Eq. (21)]
are related to the HF fields H and 4 by the transformation

(€19}

higher order LECs, are included in the relativistic Lagrangian,
one has to take into account that A—D and D" contain
higher order interaction terms, such that further expansion
of these quantities becomes necessary. Just like HF, the FW
transformation generates an expansion in 1/m, but the two
series are not identical.

For example, the free N propagator is (see Ref. [9])

i i

i30—<«/m2—V2—m) i3+ 2

. (40)
R

i.e., exactly what would naively be expected for a nonrela-
tivistic propagator. Unlike the inverse of the HF propagator
(13) the inverse of Eq. (40) is linear in idy, although its
dependence on the spatial components is more complicated.
Applying this FW propagator to the same situation as in the
HF case (but with the relativistic on-shell condition now being

2 4
lp=vm?>+P —m= - — &) we get

i
1—q)? 1—q)*
lo— g0 — G- + G+
i
= . (41)
2201 1—q)'—I*
—qo — % + % R

which differs from the HF propagator [Eq. (14)]. Although
the HF and FW propagators go on-shell for the same value
of [* for any given order, in general they do differ off-shell
beyond leading order. Also the on-shell residues are different,
as discussed already in [14]. It was pointed out in Ref. [14],
however, that the difference between these propagators can be
compensated for by a field redefinition.

014005-4



COMPARISON OF THE HEAVY-FERMION AND FOLDY-. ..

C. Comparison of HF and FW to third order

In contrast to HF, FW is an expansion in terms of both
space and time derivatives of the fermion, i.e., the FW
transformation is not restricted to the time derivatives only.
The two schemes also differ in that the integrated-out pieces
of FW have contributions at all orders, not just the first few
as in HF—compare Eq. (9) to Egs. (36)—(39). Comparison
with Eq. (12) shows that the difference in the Lagrangian
between these two expansion choices is given (to this order)
by the second line of Eq. (39), i.e., differences start to appear at
O(1/m?). Both result in expansions in 1/m, where m indicates
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[14], which was carried out to O(1/m?) for a constant electric
field, we have kept the Lagrangian general (not necessarily
renormalizable, e.g., HB x PT), but restricted the expansion to
O /m?).

In order to transform from the HF to FW formalisms we
need to ‘complete the square’ for the H and 4 fields according
to Eq. (8). This boils down to an additional transformation

H 1 0\ (H
(1) = (ot per 1) (1) @

We then arrive at the field transformation

the size of the cutoff of the theory. Note that the fields H , N© [/ H
and N are not identical (and neither are h’ and n), except y = <n(i> ) =M ( h/> , (43)
at the lowest order, but are related through a rather involved
transformation, see below. In contrast to the transformation in where
|
1 —5-B
MO = ) (44)
0 1
1+:5BC —LB+ LB
M2 = . B e, (45)
wxC(iDy+A) 1-:5CB
1 B A 3 BAR 1
M(3) _ M(Z) — o _WB(ZDO + D)C . 16m?3 BCB — %}73” (46)
—55CBC + g=[C' — (iDy + D)CI(i Dy + A) —5:C'B

We have checked that this transformation indeed transforms
the Lagrangian from the FW to the HF representation [to
O(1/m?)]. This is not a unitary transformation, because of the
block-diagonalizing done in Eq. (42). It is equivalent to the
wave function renormalization and unitary field redefinitions
in Refs. [14,21]. In contrast to Ref. [14], however, we
give the general transformation to O(1/m?), i.e., it applies
equally well to non-Abelian and non-renormalizable theories.
Obviously, the FW spinor N contains parts of the (to be)
integrated-out HF spinor #’. This means that transforming
the upper/large components from one to the other mixes
in lower components of the other representation. Thus, the
transformation can be carried out explicitly only in cases where
the lower component Lagrangian is known (up to the required
order).

The general relation between the HF and FW Lagrangians
to a given order is

H'UyyH + W Lyyh' = N\UywN +n'Lyn.  (47)

Assuming a general form for the ith order matrix M® =

(% o)) that relates the FW and HF fields [Eq. (43)] we can
write [hereafter suppressing the index (i)]

Upw 0\ _ [(a' "\ (Uww O a b
<0 LW)—<bT d)\ o r,)\e a) @

This puts constraints on the Lagrangian operators Uyy and
Lyy:

Upn = a'Uyya + c'Lyye, (49)
Lyw = b'Uynb +d'Lyd, (50)
0=a Uyyb+c'Lyd, (51)
0=">0'Uyya +d'Lyc. (52)

By taking advantage of the block-diagonal conditions [(51)
and (52)], the lower component L,, can be eliminated from
the expression for Uy i and we arrive at a relation between the
upper left blocks of the two Lagrangians:

Uy = a'Uyn(a —bd~'c) =[a" = ' d) ' Uyna. (53)

This gives a relation between the operator forms of the
Lagrangians that remain after integrating out the respective
lower components. To O(1/m?) this expression is simplified
to

Upyn :aTUNNa- 54

The explicit expression as provided by Eq. (45) is

| QO ) B
Uyu =1+ -—=BC|U 14+ -—BC), 55
HH ( + B2 ) NN < + &2 ) (35
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which is the general form of the wave function renormalization
to this order. It reproduces, e.g., the special cases considered
in [14]. Incidentally, this expression explains why the O(1/m)
expressions look equivalent—the transformation between the
HF and FW Lagrangians is O(1/m?).

The 1/m corrections to contact terms can be different
for the two methods. This can be seen in, e.g., the 7N
Lagrangian that has been developed to O(1/m?) [19,25] and
higher [20] in HB xPT, using the HF method. We find that
the gf\/m2 corrections to the LECs 312 and 313 in [19,20]
are different in the HF and FW formalisms. Thus, if these
LECs are calculated, e.g., by resonance saturation, or extracted
from data using the relativistic formulation, it would seem
like the corresponding 1/m corrections would matter. This
difference could be absorbed by a field renormalization
and unitary transformation, see Refs. [14,21], provided the
lower components of the relativistic Lagrangian are known.
Therefore, the equivalence of the HF and FW approaches
can be established quite generally and in particular regarding
the values of LECs at higher orders. Since the FW result
reproduces the relativistic S-matrix [17], it is clear that so
will the corresponding HF result.

III. CONCLUSIONS

We have carried out the heavy-fermion (HF) and
Foldy-Wouthuysen (FW) nonrelativistic reduction schemes
to O(1/m?), starting from a quite general, relativistic,
Lagrangian. At this order explicit differences start to appear in
the expressions of the respective non-relativistic Lagrangians.
Our investigation treats a more general Lagrangian than the one
in [14] and is especially concerned with the LECs (introduced
in the relativistic Lagrangian) as they appear in the NR theory,
e.g., xPT.

We have derived the field transformation between the
two descriptions to O(1/m?) and have shown how the 1/m
corrections to certain LECs differ between the two approaches
at this order. Although the Lagrangians differ at O(1/m?), they
can be related through a field redefinition, which we give in a
more general form than the one in Ref. [14]. Thus, when using
LECs of higher order, one must ascertain that the fields are
appropriately redefined.

We have also shown the equivalence between the NR
propagators derived in HF and from an 1/m expansion. On
the other hand, even though the HF and FW propagators go
on-shell for the same four-momentum, they will differ off-
shell. Also this difference is captured by the field redefinition.
In order to do the field redefinition it is necessary to know the
lower components of the original, relativistic Lagrangian.
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APPENDIX: INTEGRATING OUT SMALL COMPONENTS

We repeat here the arguments given in Ref. [3] (see also
[14]) showing that the integration over the lower components
of the HF Lagrangian gives a constant. The discussion
automatically carries over to the FW case. The path integral
we need to perform for HF is

Tur = /[dhﬁ][dh/]exp |:i/d4xh/T(2m+iD0—ie)h’:|
= Det(2m +idy + iy — i€)
= Det(2 jdp)Det | 1 + —————i
ctzm + 1)be < T om it —ie 0)
= Det(2m +idp)
1 1
~Trin{1+ ——F7F7+——F—il = Const.
><exp|:2 rn( +2m+i30—iel 0>:| ons
(AT

As argued in Ref. [3], the propagator in the logarithm is always
propagating in the backward time direction only. Thus the trace
cannot be closed, it has to vanish, and the determinant is a
constant as indicated.

To O(1/m?) in FW we have

Irw = /[dnT][dn] exp [i / d4an<2m +iDy+ A
| = s 2
t—(—i5-D+C)—i5-D+B)
2m
1 .= - 2
+—(—ioc - D+ C)iDy+ A)—io - D+ B)
4m?
1 - -
— —{(—i5 - D+ C)(—i5 - D + B),
8m?
(Do + D)) — ie)n:|. (A2)

The resulting determinant can, just as in the HF case, be
factorized into the free propagator and interaction terms:

om 8m3
1

2m +idp — o —

v: v
Ipszet<2m+i80—— _|_>

xDet|:1+ 5
g7 T e

X (interaction terms)]

v v
=Det(2m+idp— — — — +---
e<m+lo o 8m3+ )

1

. V2 v4 .
2m+180—ﬁ—w+"'—l6

1
X exp |:§Tr In (1 +

X (interaction terms)>:| = Const., (A3)
where in the last step we again use the fact that the propagator
propagates in the backward time direction only, so that no
closed loops are possible.
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